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Spatial Analysis of Bureaucrats’ Attempts to Resist Political Capture in a Developing 

Democracy: The Distribution of Solar Panels in Ghana 

 

 

Appendix (Online): Technical Discussion of Data and Methods 

 

Part A: Dataset Creation 

 

District Shapefiles 

For the analysis in “Spatial Analysis of Bureaucrats’ Attempts to Resist Political Capture 

in a Developing Democracy: The Distribution of Solar Panels in Ghana,” we created a new 

spatial dataset by merging several types of data. We use a shapefile for Ghana’s districts that was 

created by the RS/GIS Lab at the University of Ghana-Legon. Existing shapefiles were of 2012 

jurisdictions, requiring us to create new shapefiles that represent district boundaries in 2008, 

before the solar panel commenced. This was necessary because some districts were created 

between 2008 and  2012 by splitting jurisdictions. After identifying the new districts created in 

2012, we were able to merge them back together to form their 2008 counterparts.  

 

 

Fitting Variables to Shapefiles 
Most variables in the analysis required some form of transformation in order to fit into 

these shapefiles. We took three approaches to variable transformation, depending on data type. 

First, for variables that originated at the constituency level (NDC vote share 2008; voter turnout 

2008; and ethnic fractionalization), we created district-level data by computing average values 

among the constituencies in the district. These averages are weighted by population (although 

population-weighted averages and averages that are not weighted by population are almost 

identical). Out of 230 total constituencies, we implement this transformation for 97 

constituencies that fall within 37 districts. Second, for geo-located data (solar panels and World 

Bank projects) we spatially joined the existing data to the district shapefile. Third, for line 

shapefiles (electric grid and roads), we used the Intersect feature in ArcMap. We then took the 

resultant file and used the Dissolve feature in ArcMap to reduce the road and electric grid files 

down to one unit per district. The Calculate Geometry tool then allowed us to calculate line 

lengths. For electric grid per capita, we divided the length of grid by population. For road 

density, we divided the length of roads by area of the district. We display descriptive statistics in 

Table A1 below. 
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Table A1: Descriptive Statistics 
 Mean Min Max SD N 

Dependent Variable      
Solar projects 7.28 0 202 27.38 170 

      

Political Variables      
Reward NDC loyalists  
(2008 NDC vote share) 

0.49 0.11 0.96 0.18 170 

Induce swing voters 
(NDC vote share volatility) 

0.05 0 0.21 0.04 170 

Mobilize voters where turnout level varies  
(turnout volatility) 

0.15 0 0.27 0.04 170 

      
Need Variables      
Electric grid per capita (*1000) 0.28 0 4.35 0.44 170 
Road network density 0.12 0.03 0.42 0.05 170 
       
Control Variables      
Ethnic fractionalization 0.41 0.06 0.82 0.2 170 
Population density 391.59 7.97 10124.2 1311.76 170 
World Bank projects 5.36 0 52 5.14 170 
Percent nonvoters 2008 0.29 0.16 0.46 0.05 170 
Poverty rate 30.52 1.95 92.4 19.96 170 
Inequality level (Gini) 38.69 27.2 64 6.02 170 
Number of health facilities 21.71 3 276 26.32 170 
Literacy 0.68 0.2 0.93 0.18 170 
Female ratio 0.51 0.47 0.55 0.02 170 

 
 

Part B: Additional Methodological Discussion and Analysis 

 

Accounting for Spatial Autocorrelation: Selecting Spatially Lagged Dependent Variable 

(SLDV) Models for Use in the Analysis 

In the body of our manuscript, we present SLDV models that account for spatial 

clustering. It has been suggested that we might instead aggregate our district data into higher-

level units (regions) in order to employ multi-level models, because fixed effects for given 

spatial units offer leverage to examine within-unit effects. Such an approach is not appropriate 

for several reasons. First, the approach does not account for clustering. Second, region fixed 

effects are not theoretically relevant for the questions asked. Third, given the way that 

bureaucrats selected locations, a “nested” approach is not as well-matched, theoretically, as the 

SLDV approach. We do present OLS models in the paper and additional models in this 

appendix, and those models cluster standard errors by region. 

We thus highlight modelling strategies that account for spatial clustering. To confirm that 

this was appropriate, first, we use an LM test to examine whether an OLS model sufficiently fits 

our data, or if the model needs a spatially lagged variable or spatial error term. Spatially lagged 

dependent variable models account for the possibility that the values of the dependent variable in 

one location are influenced by the values in nearby locations. Spatial error models, on the other 

hand, are intended to account for omitted variables that are spatially autocorrelated. Such 



 3 

variables are often omitted because they are either very difficult or impossible to effectively 

measure. 

The equation for spatial error models is as follows:  

y=X(β) + ε, ε =λ(W) ε + u 

In this equation, y is the dependent variable, X is a matrix of observations on the explanatory 

variables, λ and β are parameters, ε is a vector of spatially autocorrelated error terms, W is the 

spatial weights matrix, and u is a vector of independent identically distributed (i.i.d.) errors. 

 To estimate spatially lagged dependent variable models, the following equation is used: 

y=(ρ)Wy + X(β) + ε 

In this equation, Wy is the spatially lagged dependent variable for weights matrix W, X is a 

matrix of observations on the explanatory variables, ε is a vector of error terms, and ρ and β are 

parameters. 

While the technical components of SLDV and spatial error models are distinct, they 

address closely related issues. Many models may exhibit spatially clustered error terms and 

spatial autocorrelation in the dependent variable. This produces a need to statistically diagnose 

which type of model is more appropriate. Since our data include both violations of the 

assumptions of OLS, we employ another LM diagnostic test, presented in Table A2.  

Use of the LM diagnostic was originally suggested by Anselin and Rey.1 This was 

refined by Anselin et al. to incorporate the robust forms of the statistics.2 In all of the simple LM 

tests for error dependence and for a missing spatially lagged dependent variable, our test 

statistics were statistically significant. This led us to look to robust versions of these tests. The 

LM test for error dependence in the possible presence of a missing spatially lagged dependent 

variable is not significant at any of the levels of analysis. Meanwhile, the LM test for a missing 

spatially lagged dependent variable in the possible presence of error dependence is significant at 

the 0.1 level or lower throughout all models. This indicates that the spatially lagged dependent 

variable model is more appropriate than the spatial error model. The variables used in these 

analyses are not highly collinear (defined as Pearson’s r > 0.7), and the variance inflation factor 

(VIF) clearly indicates that global multicollinearity is not present. We estimate the spatial models 

using the “spdep” package in R.3 

Researchers often interpret the coefficients immediately estimated by SLDV models 

(Whitten, Guy D., Laron K. Williams & Cameron Wimpy 2019). Yet this approach conflates 

spatial dependencies and the relationship between the independent and dependent variable. 

Instead, we use the impacts function as a post-estimation step to isolate the direct effects of our 

independent variables. Direct effects are the effects of independent variables at a location i on the 

dependent variable at location i. Indirect effects are the effects of independent variables at a 

location i on the dependent variable on i’s neighboring locations j. Direct effect coefficients can 

be interpreted like OLS coefficients. We obtain distributions of our direct effects by using a 

Markov Chain Monte Carlo simulation process. We ran 1000 simulations and calculated z-

statistics from these simulations. 

 

  

                                                 
1 Anselin and Rey 1991. 
2 Anselin et al. 1996. 
3 See Bivand et al. 2005. Since the R spatial analysis community is transitioning from spdep to spatialreg, future 

researchers may need to update their R script accordingly. 
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TABLE A2. Diagnostics for Spatially Lagged versus Spatial Error Model Fit 

District Data 

  Statistic p-value 

Simple LM error test 5.4313 0.019779*  

Simple LM spatial lag test 8.7718  0.003059* 

Robust LM error test 1.0663 0.301779 

Robust LM spatial lag test 4.4068 0.035795* 

Portmanteau test: LMerr+RLMlag 9.8381 0.007306* 

* p<0.05   

 

 Second, we use an additional LM test to examine whether a model with only a spatially 

lagged dependent variable (SLDV) can effectively fit our data. If this LM test calculates a 

statistically significant parameter, then there is justification to use a spatial Durbin model 

(Elhorst 2010). In our case, this test fails to support the need for inclusion of spatially lagged 

independent variables, so we have confidence that either an SLDV or spatial error model is most 

appropriate.4 

 

Robustness and Sensitivity Checks on Spatially Lagged Dependent Variable Models 

 

Presentation of Additional SLDV Models 

 To confirm the validity of our results, we report in Table A3 a variety of model 

specifications. Models 2 and 3 include a variable for whether a jurisdiction borders Lake Volta, 

which is a dichotomous variable valued at 1 if the district touches the lake. (This variable is not a 

variable for the district being part of Volta Region, which is a formal administrative unit; see 

Figure 3 in the main text.) We include the variable for bordering the lake both because we were 

told that the program initially targeting island communities, and because there is clearly 

clustering in that area. Additionally, Model 4 includes a dummy variable for whether turnout in a 

district increased between 2004 and 2008. We include this variable to test whether the direction 

of turnout matters – whether more or fewer people voted in 2008 than in 2004 in a jurisdiction. 

In some models, we dropped population density, since it is clear from the maps that solar PV 

panels were not being targeted to major urban areas. In Model 5, we estimated an SLDV model 

with population instead of population density. Due to relatively high collinearity between 

population and road density (0.65), we had to manually increase the tolerance for this model to 

converge. 

 

  

                                                 
4 Another option has been suggested, but it is not currently possible to do. Specifically, spatial econometrics has 

long been interested in the possibility of including both a spatially lagged dependent variable and a spatial error term 

(Fischer and Getis 2009, p. 381-382). However, this is not possible if the spatial weights matrix is the same for the 

spatially lagged dependent variable and the spatial error term (Anselin and Bera 1998). 
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Table A3: Direct Effects of Spatially Lagged Total Solar Projects 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Political Variables      

H1A: Reward NDC loyalists  
(2008 NDC vote share) 13.00 6.58 7.52 12.11 15.11 

 (1.04) (0.55) (0.66) (0.93) (1.30) 
H1B: Induce swing voters 
(NDC vote share volatility) 47.35 48.59 51.89 40.68 45.38 

 (0.98) (1.05) (1.18) (0.85) (1.05) 
H1C: Mobilize nonvoting incumbent supporters  
(nonvoters * NDC vote share) 123.30* 109.20* 102.80* 103.90 109.96* 
 (2.12) (2.06) (1.95) (1.80) (1.92) 
H1C: Mobilize voters where turnout level varies  
(turnout volatility)    -18.23  

    (-1.32)  

Need Variables      

H2A: Electric grid per capita -4952 -4315 -3926 -4906 -4224 

 (-1.07) (-1.03) (-0.95) (-1.17) (-1.02) 

H2B: Road network density -100.20* -74.32 -111.20* -153.10* -114.09* 

 (-2.14) (-1.69) (-2.23) (-2.83) (-2.58) 

Control Variables      

Ethnic fractionalization 5.97 -3.11 -5.82 2.36 4.69 

 (0.56) (-0.31) (-0.54) (0.20) (0.42) 

Population density   0.003 0.004  

   (1.30) (1.50)  

Population size     0.00004 

     (1.78) 

World Bank projects -0.27 -0.54 -0.54 -0.14 -0.45 

 (-0.63) (-1.37) (-1.39) (-0.32) (-1.09) 

Percent voters 2008 -41.08 -33.05 -35.19 -63.23 -45.28 

 (-0.81) (-0.72) (-0.75) (-1.26) (-0.90) 

Poverty rate -0.1 -0.1 -0.09 -0.08 -0.09 

 (-0.71) (-0.75) (-0.69) (-0.56) (-0.61) 

Inequality level (Gini) 0.04 0.08 0.13 0.03 0.11 

 (0.14) (0.27) (0.41) (0.07) (0.33) 

Number of health facilities 0.05 0.06 -0.01 -0.05 -0.17 

 (0.59) (0.73) (-0.10) (-0.50) (-1.14) 

Literacy -16.93 -10.66 -6.99 -13.14 -13.20 

 (-1.05) (-0.69) (-0.45) (-0.79) (-0.73) 

Female ratio -347.90* -303.00* -316.70* -356.40* -359.24* 

 (-2.38) (-2.26) (-2.36) (-2.48) (-2.60) 

Borders Lake Volta  33.29* 32.91*   

  (4.65) (4.35)   

      

N 170 170 170 170 170 

* p<0.05 
 Estimates are mean direct effects; simulated z-statistics are in parentheses 
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In all models, turnout volatility remains statistically significant and positive, and road 

density is statistically significant and negative, even when the Borders Lake Volta dummy is 

included. This Lake Volta variable is significant when included in models, but the dummy 

variable marking when voter turnout increased in a district is not. 

  

OLS Models  

Table A4 presents OLS results. Models 3 and 4 are the same as Models 1 and 2 in Table 

2 of the main text. Models 1 and 2 in Table A4 exclude control variables. We cluster standard 

errors by region. Our OLS results are consistent with our SLDV results, except more variables 

are statistically significant. This is to be expected when spatial clustering is not fully taken into 

account. 
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Table A4: OLS Analysis of Spatially Lagged Total Solar Projects 

 Model 1 Model 2 Model 3 Model 4 

Political Variables  
 

  
H1A: Reward NDC loyalists  
(2008 NDC vote share) 19.55* -51.67 19.69 -56.75 

 (9.16) (75.86) (12.47) (70.11) 
H1B: Induce swing voters 
(NDC vote share volatility) 54.30 67.01 48.68 60.39 

 (65.14) (68.84) (73.04) (76.22) 
H1C: Mobilize nonvoting incumbent supporters 
(nonvoters * NDC vote share)  247.28  262.97 

 
 (270.65)  (253.41) 

H1C: Mobilize voters where turnout level varies 
(turnout volatility) 133.47* 115.90* 145.22* 128.93* 

 (57.87) (52.26) (59.38) (55.95) 

Need Variables     
H2A: Electric grid per capita -5351.00* -5297.54* -5059.93+ -4939.84+ 
 (2703.17) (2671.00) (2669.37) (2613.32) 

H2B: Road network density  -198.85** -193.22** -171.33* -162.41* 
 (72.80) (69.69) (72.61) (69.07) 

Control Variables     

Ethnic fractionalization 21.92+ 23.93+ 7.00 9.27 
 (13.20) (14.20) (12.24) (12.25) 

Population density 0.003+ 0.003+ 0.004+ 0.004+ 
 (0.001) (0.001) (0.002) (0.002) 

World Bank projects -0.32 -0.37 -0.22 -0.28 
 (0.23) (0.25) (0.25) (0.27) 

Percent nonvoters 2008 29.04 -88.91 36.97 -88.89 
 (43.02) (114.51) (50.49) (106.52) 

Poverty rate   -0.06 -0.07 
 

  (0.12) (0.12) 

Inequality level (Gini)   0.14 0.17 
 

  (0.30) (0.29) 

Number of health facilities   -0.04 -0.04 
 

  (0.05) (0.05) 

Literacy   -8.70 -10.49 
 

  (18.24) (18.02) 

Female ratio   -377.37 -372.23 
 

  (237.45) (231.38) 

     

N 170 170 170 170 

+ p<0.10 ; * p<0.05 ; ** p<0.01 
 Estimates are mean effects; standard errors clustered by region are in parentheses 
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Spatial Analysis Using Count Models 

Ideal analyses for the data would use models that reflect the fact that our data more 

closely resembles a Poisson distribution than a normal distribution; a count model would be most 

appropriate. Given limitations of existing statistical packages, however, it is not possible to 

combine global analyses that account for spatial autocorrelation with local analysis using 

geographically weighted regression, if count models are used. Specifically, the only available 

statistical packages for count models with spatially autocorrelated data employ Bayesian analysis 

techniques, whereas GWR models employ frequentist maximum likelihood approaches. Because 

these rely on fundamentally different procedures for inference, we do not believe they should be 

used together. Moreover, there does not yet exist a reliable statistical package for GWR with 

count models (discussed more below). 

As a result, the body of our paper presents models that assume normally distributed data 

in Table 2, but we present spatial count models here to show that results are not highly sensitive 

to model specification. To do so, we employ the relatively recent CARBayes package in R.5 

These count models address spatial autocorrelation through the incorporation of vectors of 

random effects. This approach is different than that of SLDV models, in which the dependent 

variable is lagged to incorporate values of neighboring units on the right-hand side of the 

equation. These count model approaches tend to rely upon simulation-based techniques for 

inference, as opposed to maximum likelihood. 

Table A5 shows the results of estimating Poisson models that include a vector of random 

effects. Specifically, we fit a multivariate spatial generalized linear mixed model, where the 

random effects are modelled by a multivariate conditional autoregressive model.6 The 

conditional autoregressive prior was proposed by Leroux et al., so we refer to these as Leroux 

models.7 Between variable correlation is captured by a between variable covariance matrix with 

no fixed structure. Further details are provided in the package vignette.8 For our models, we ran 

150,000 Markov Chain Monte Carlo (MCMC) simulations with 50,000 burn-in. The high 

number of simulations was necessary for us to obtain a reasonable acceptance rate for the 

Markov chain, although it may also make these models more likely to detect statistical 

significance. 

 

  

                                                 
5 Lee 2013. 
6 Within CARBayes, this is done by the MVS.CARleroux command. 
7 Leroux et al. 2000. 
8 Lee 2017. 
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TABLE A5. Leroux Model Estimated Effects on Total Solar Projects 

  Districts 

Political Variables  

H1A: Reward NDC loyalists  
(2008 NDC vote share) 

0.5112 

  (-3.6493 – 8.8148) 

 H1B: Induce swing voters 
(NDC vote share volatility) 

8.3577 

  (-11.2945 – 32.0298) 

H1C: Mobilize voters where turnout level varies  
(turnout volatility) 

24.2897 

  (-16.7662 – 46.6628) 

Need Variables  

H2A: Electric grid per capita 1013.2836 

  (-1493.8302 – 2523.9297) 

H2B: Road network density  -143.8257* 

  (-162.7773 – -0.8783) 

Control Variables  

Ethnic fractionalization -9.6067 

  (-14.6354 – 5.7254) 

Population density -0.0036 

  (-0.0073 – 0.0018) 

World Bank projects -1.2172* 

  (-1.4687 – -0.0487) 

Percent voters 2008 -35.2699 

  (-52.0530 – 8.3183) 

Poverty rate 0.2187* 

  (0.0599 – 0.2692) 

Inequality level (Gini) -0.4224* 

  (-0.6377 – -0.0543) 

Number of health facilities 0.2068 

  (-0.0374 – 0.3287) 

Literacy 12.3708 

  (-2.3480 – 20.8424) 

Female Ratio 86.3596 

  (-26.4562 – 142.3604) 

    

N 170 

*p<0.05  

Range between 2.5th percentile and 97.5th percentile in parentheses. 

 

These results are largely consistent with those in Table A3 in showing the interaction 

between when need-based and political factors influence the distribution of solar projects. 

Namely, need-based factors consistently are correlated with solar panel distribution. Meanwhile, 

these models suggest different stories about political factors. In the SLDV models (Table A3), 

our measures for need and politics are significant. In the Leroux model (Table A5), however, 

need variables are significant, but political ones are not. Before discussing these results in greater 

detail, we emphasize that the Leroux and SLDV models employ different procedures for 

inference (Bayesian MCMC simulations vs. Frequentist maximum likelihood). The substantial 
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differences between these models make it extremely difficult to obtain perfectly consistent 

results.   

The Leroux model presented in Table A5 finds statistical significance for need variables. 

This result corresponds with the stated goals of the program implementers, and provides 

suggestive evidence, unlike the SLDV models, that they were able to avoid political capture. 

 

Additional Information on and Results from Geographically Weighted Regression (GWR) 
While spatially lagged dependent variable models offer many valuable insights for our 

analysis, they average effects across all units into a single coefficient estimate for each variable. 

To test whether differences exist in variable relationships over space, we employ geographically 

weighted regression (GWR) as a sensitivity analysis. GWR has been used for a wide variety of 

topics to explore the spatial heterogeneity in relationships, such as voter behavior during the US 

Democratic realignment of the 1920s and 1930s,9 campaign contributing and volunteerism,10 

regional effects of terrorism on economic growth,11 and even afforestation in Vietnam.12 Here, 

we provide additional explanation of GWR analyses, as well as model results. 

GWR estimates distinct coefficients for each unit in an analysis, allowing the researcher 

to examine the logic of distribution employed in individual jurisdictions. In our case, it allows us 

to check whether there appears to be cross-district variation in the logic of public goods 

distribution. GWR is critical for our analysis because distributed goods are visibly clustered in a 

particular area – the islands and remote villages in and around Lake Volta. GWR allows us to 

determine whether the logics at play in this region are consistent in the rest of the country. In 

doing so, we also illustrate the utility of using advanced spatial methods to explore and compare 

average national phenomena with local-level variation. 

Using GWR, locations closer to a given location i receive greater weight than locations 

that are further away from location i. Such weight is assigned through a spatial weights matrix. 

The resulting equation, and its spatial weights matrix, can be displayed in two equations as 

follows: 

Equation 1: y
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Equation 2: wij exp[–1/2(dij/b)2] 

where “ui, vi” denotes the coordinates of the ith point in space and βk(ui, vi) is a realization of the 

continuous function βk(u, v) at point i.13 In the spatial weights matrix, dij is the distance between 

locations i and j and b is the bandwidth. Bandwidth reflects the distance-decay of the weighting 

function and affects the spatial smoothing of the estimates. For our analysis, we use the corrected 

AIC statistic to calculate the optimal distance for our spatial weights. 

Estimates from GWR could reveal unit-level estimates that vary substantially. This could 

suggest that different logics exist across space. Alternatively, GWR results could reveal that the 

same logic holds across space, but that the magnitude of the relationship varies across units. 

Because GWR results do not report significance, interpreting them requires knowledge and 

analysis of local context.14 

                                                 
9 Darmofal 2008. 
10 Cho and Gimpel 2010. 
11 Ocal & Yildirim 2010. 
12 Clement et al. 2009. 
13 Fotheringham, Brunsdon, and Charlton 2002. 
14 Clement et al. 2009. 
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To interpret GWR results, it is common practice to compare GWR results for each unit of 

analysis (districts in our case) to average marginal effects reported in OLS regressions of the 

same variables.15 One can then evaluate the range of variation in a coefficient by simply 

comparing the minimum, maximum and various percentile coefficient values for each variable of 

interest, which are estimated in GWR. GWR allows us to inspect whether the average marginal 

effect from the OLS regression falls close to the marginal effect of the median data point in 

GWR results. OLS average marginal effect values that are far above or below the median effect 

indicate the possibility of a strong spatial component to the variation in average marginal effect. 

In simple terms, if the average marginal effect from OLS regression falls below the 25th 

percentile or above the 75th percentile calculated in GWR estimation, some areas of the country 

are likely driving the results, and we can examine which areas those are. Table A6 thus shows 

OLS results for models with the variables that are in the GWR analysis, alongside minimum, 

maximum and several percentile GWR results. 

We start with the need-based variable, road density, which was significant in our global 

models. The sign of the coefficients is consistent across the OLS result and the interquartile 

range, suggesting that the basic logic of distributing projects where existing infrastructure is 

limited is consistent countrywide. At the same time, however, the OLS result for road density 

falls just below the interquartile range, suggesting that the statistical significance in the global 

models may be driven by particularly strong relationships in a subset of the units. We explore 

this subnational variation qualitatively in the body of the text. 

 
TABLE A6. GWR Results: Estimated Effects on Number of Solar Panels 

District Data 

 OLS Min 25% Median 75% Max 

Electric grid per capita -6477.44 -22042.67 -10673.30 -5111.39 -1129.57 921.36 

Road density -162.81 -782.99 -153.12 -74.22 -23.14 62.78 

NDC vote share 2008 19.55 -7.72 13.33 26.55 29.98 52.27 

NDC vote share volatility 36.85 -158.27 -36.40 -14.42 44.45 641.92 

Turnout volatility 177.21 -7.34 38.98 77.65 150.45 463.97 

 

Results are largely the same for the measure of political influence that is statistically 

significant in the SLDV results, turnout volatility. The interquartile range results in Table A6 

show that turnout volatility is positively associated with panel distribution in most of Ghana. 

However, the mean coefficient on turnout volatility is larger than the coefficients in the 

interquartile range. This means that the coefficient estimates for more than 75 percent of districts 

falls below the average marginal effect. As with the effect of road density, we can infer that 

while there is generally a positive relationship between turnout volatility and panel distribution, 

particularly strong relationships in a subset of jurisdictions may be driving the statistical 

significance in the global models. 

                                                 
15 Although it would be ideal to compare GWR results with the results from our global SLDV model, they are not 

strictly comparable, because SLDV models account for spatial clustering while GWR models do not. As a result, it 

is standard to compare GWR and OLS results. While OLS model results may produce biased coefficients due to 

violations of the independent observation assumption, here our OLS results are similar in coefficient sign and 

magnitude when compared to our SLDV results. 
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Maps of GWR results—which are presented in Figure 4 in the main text—help us to 

further interpret these results.16 Specifically, we see that across nearly the entire country, the 

relationship between solar panel distribution and road density is negative, and the relationship 

between solar panel distribution and turnout volatility is positive. But we also see that there is 

considerable variation in the magnitude of these coefficients across the country for both 

variables.  

Here, we also recognize the limitations of GWR. Local collinearities, the lack of a base 

model to explain coefficient variation, repeated use of data to estimate model parameters, and 

sensitivity to kernel bandwidth can lead to unreliable estimates of coefficient signs, coefficient 

magnitudes, and standard error sizes.17 While these concerns make GWR unreliable for 

explanatory assessments of statistical significance, GWR is suitable as it is used in our paper, 

where the goal is exploratory analysis of variation in coefficient signs and magnitudes. 

 

A Note on GWR Analyses Using Count Models 

As explained earlier, local analysis with geographically weighted regression is most 

frequently performed using OLS as the base model. Shifting to Poisson models to reflect the 

non-normal distribution of our dependent variable, GWR becomes more complex. The spgwr 

package in R is capable of estimating GWR Poisson models, but even the authors of the package 

are uncertain about whether scholars should use it. They state, “The use of GWR on GLM is 

only at the initial proof of concept stage, nothing should be treated as an accepted method at this 

stage”.18 Given this uncertainty, we chose not to use GWR Poisson models.  

 

Hot Spot Analysis 

In the main text of the paper, we overlay solar power projects, represented as dots, on 

maps of the electric grid and NDC vote share in Figure 1. We also overlay the dots on choropleth 

maps of road density and voter turnout volatility in Figure 5. These maps yield valuable 

opportunities for descriptive analysis. However, misperceptions from visually examining these 

variables are possible. Because of this, we leverage spatial statistics as a robustness check, which 

can be done with hot spot analysis.  

Whereas GWR explores spatial variation in the relationship between variables at a 

specific unit of analysis, hot spot analysis is a statistical technique that assesses where a variable 

of interest is particularly clustered or dispersed. This method goes beyond a simple “eyeball test” 

of where individual solar projects are located because it is not susceptible to visual 

misperceptions. For our discussion, hot spot analysis also cuts through the complexity of 

searching for patterns in the spatial distribution of 1242 solar power projects.  

Hot spot analysis has been used to help explain a variety of political phenomena, such as 

terrorism.19 A “hot spot” is a geographic area in which the variable of interest – in our case, solar 

panel distribution – is clustered. A “cold spot” is therefore where there is a high degree of 

dispersion at the local level. We use the Getis-Ord Gi* statistic for our hot spot analysis, as 

                                                 
16 For our maps, we display five gradients. The intervals for these gradients are calculated by ArcGIS using the 

Natural Breaks (Jenks) method. As Cho and Gimpel (2010) state, the natural breaks method maximizes within-class 

homogeneity and between-class heterogeneity. 
17 Wheeler and Tiefelsdorf 2005, Wheeler 2014. 
18 Bivand et al. 2017. 
19 Nemeth, Mauslein, and Stapley 2014. 
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calculated by ArcGIS.20 This statistic is calculated using the equations in the figure below.21 

Since the Gi* statistic is a z-score, we can intuitively interpret the positive and significant values 

as hot spots and the negative and significant values as cold spots. 

 

Figure A1: Getis-Ord Statistic Equations 

 
 

We create the “weighted” points that are necessary for hot spot analysis with the Integrate 

command in ArcGIS. With this command, we grouped points that are within 10 kilometers of 

each other. In our analysis, we display hot spots (local clustering, shown as flames) and cold 

spots (local dispersion, shown as diamonds) at the 90%, 95%, and 99% confidence levels (Figure 

A2). In Figure A2, the highest levels of clustering are marked with dark flames, and the highest 

levels of dispersion are marked with dark diamonds. We can obtain additional insights by 

overlaying our hot spot analysis on maps of road density and voter turnout volatility.22 These 

maps reveal that the main cluster around Lake Volta is the only area in Ghana with both low road 

density and high voter turnout volatility. This yields a combined motivation to place solar power 

projects in this area: high need and high voter mobilization potential.  

 
  

                                                 
20 Nemeth, Mauslein, and Stapley 2014. 
21 The figure comes from ArcGIS documentation here: http://pro.arcgis.com/en/pro-app/tool-reference/spatial-

statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm  
22 It is worth noting that hotspot analysis does not recognize sub-national boundaries; districts are shown in Figure 

A2 in order to display descriptive statistics of road density or voter turnout volatility only. 

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
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FIGURE A2. Hotspot Analyses 
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